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We investigate spin-dependent electron transport through a zigzag graphene nanoribbon sample with two
ferromagnetic strips deposit on two sides of the graphene ribbon. Our results show that, for the antiparallel
configurations of ferromagnetic strips, the conductance exhibits zero conductance plateau when the Fermi
energy locates around the Dirac point and the sample shows the properties of a semiconductor. But for the
parallel configurations, the energy band spectrum is metallic and the conductance is always equal to or larger
than e2 /h. Thus the huge giant magnetoresistance effect can be achieved by altering the configurations of the
ferromagnetic strips. Moreover, we study the spin-dependent conductance for the parallel configuration. It is
found that the device shows half-metal behavior, in which it acts as a conductor to carriers of one spin
orientation but as an insulator to those of the opposite spin orientation. So the present device can be applied as
a spin filter. In addition, we study the consequence of the short-range Anderson disorder and find that the spin
filtering effect and magnetoresistance effect still remain even in the strong disorder limit.
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I. INTRODUCTION

Since the giant magnetoresistance �GMR� was discovered
in 1988,1,2 spintronics,3,4 including spin transfer torque,
semiconductor spintronics, molecular spintronics, and single-
electron spintronics etc., which exploits the intrinsic spin of
electrons, has been a new field of electronics. Especially, the
hard disk technology based on the GMR of spin-valve struc-
tures has led to the fast rise in the density of stored
information.5,6 Recent development of GMR technology has
also involved the tunneling magnetoresistance of the mag-
netic tunnel junctions, where the magnitude of the spin cur-
rent depends on the magnetic orientation of the electrodes.7

Graphene, a single atomic layer of carbon with a planar
hexagonal lattice, has attracted great attention8,9 in both the
physics and engineering communities due to its extraordi-
nary electrical properties along with the discovery of me-
chanical cleavage of graphene from graphite crystals.10,11

Various types of graphene based nanoelectronic devices have
been fabricated and investigated, such as the graphene
p-n-p junctions,12,13 the p-n junctions,14 the graphene-
superconductor hybrid devices,15 etc. At the same time, the
development of graphene also opens a new and powerful
way for the spintronic applications. Son et al.,16 have dem-
onstrated that graphene nanoribbons with zigzag edges can
be made to carry a spin current in the presence of a suffi-
ciently large electric field, which can therefore serve as the
basis of the spintronic devices. From the first principles non-
equilibrium transport method together with the density-

functional theory, Kim et al.17 have reported a large magne-
toresistance in the spin-valve devices based on graphene
nanoribbons. In particular, the experimental works exhibited
that the spin coherence can extend over micrometer-scale
distances in single graphene layers,18 desirable for spin-
based quantum computing and spintronics. Furthermore,
Haugen et al.19 have reported that ferromagnetic correlations
can be induced by the so-called proximity effect in the
graphene, which has recently been experimentally
demonstrated.20 Utilizing a graphene layer as the channel,
the spin field effect transistor has also been proposed, where
spin manipulation in graphene is achieved via electrical con-
trol of the electron exchange interaction with a ferromagnetic
gate.21 Recently, the spin injection into the graphene has
been realized by several experimental groups,22–26 using spin
field effect transistor based on graphene.

The spin polarization and giant magnetoresistance are two
important concepts in spintronics. Hwang et al.,27 have pre-
dicted that the negative magnetoresistance can be achieved
in intrinsic graphene and the nonmonotonic magnetoresis-
tance can be produced in extrinsic graphene with a parallel
magnetic field. The giant magnetoresistance is also predicted
in a finite zigzag graphene nanoribbon bridging two metallic
graphene electrodes.28 Motivated by the above mentioned
studies, we propose an alternative way to realize the spin
polarization and giant magnetoresistance in the zigzag
graphene nanoribbon. Our proposed system is a graphene
nanoribbon in the �x ,y� plane with the zigzag edge, as shown
in Fig. 1, where two ferromagnetic stripes are deposited on
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two sides of the graphene ribbon. The directions of the mag-
netization of the ferromagnetic stripes can be parallel or an-
tiparallel, which can be tuned by a magnetic field. By apply-
ing the Landauer-Büttiker formalism combined with the
nonequilibrium Green’s function �NEGF� method, the spin-
dependent current and conductance can be obtained. We find
that a band gap is opened around the Dirac point for the
antiparallel configuration, and the gap can reach the meV
scale. But for the parallel configuration, there is no band gap.
This indicates that a giant magnetoresistance can be pro-
duced when the Fermi energy EF locates in the gap region.
Furthermore, the current in the parallel configuration is com-
pletely spin-polarized in a large range of EF around the Dirac
point E0. While EF�E0, the spin-polarized direction is same
with the direction of the magnetic moment, but for EF�E0 it
is in opposite direction with the magnetic moment. This
means that the present device at the parallel configuration
can work as a spin filter. In particular, the spin-polarized
direction of this spin filter can be easily controlled by tuning
the gate voltage. These results open a new possibility to gen-
erate spin-polarized current and giant magnetoresistance in
the zigzag graphene nanoribbon.

The rest of the paper is organized as follows. In Sec. II we
introduce the effective tight-binding model. The formulas
and calculation method are also described. The numerical
results and our discussions are presented in Sec. III. Finally,
a conclusion is given in Sec. IV.

II. MODEL AND METHOD

With the tight-binding model, the Hamiltonian of � or-
bital electrons in the graphene is described by

H = �
i,�

��i + ��Mi�ci,�
† ci,� + t �

�i,j�,�
�ci,�

† cj,� + H.c.� , �1�

where ci,�
† �ci,�� creates �annihilates� an electron on site i with

spin ���= ↑ ,↓�, ��= �1 for ��= ↑ ,↓� and �i=E0+wi is the
on-site energy. E0 is the energy of the Dirac point, which is
set zero as the energy zero point and wi is the on-site disorder
energy uniformly distributed in the range �−W /2, W/2� with
disorder strength W. t�t�2.75 eV� is the nearest-neighbor
hopping energy, which is chosen as the unit of energy in our
calculations. Considering the two ferromagnetic strips at-
tached on the two edges of the graphene ribbon, a magneti-
zation M is induced in the graphene. Considering the experi-
mental feasibility, the thin insulating layers can be deposited
between graphene sample and ferromagnetic strips, which
can block current leakage otherwise will occur. For the anti-
parallel configuration of ferromagnetic stripes, the magneti-
zation decreases gradual from M to −M along the y direction
from one side to the other side of graphene �see Fig. 1�b��
But for parallel configuration, the magnetization is the big-
gest at the two sides �y=1 and y=Ny� with value M and
gradually decreases to zero in the middle of graphene sheet
�see Fig. 1�c��, because that the ferromagnetic stripes are
attached on the two sides. Here we consider the linear decay
of the magnetization from the edges to the center. But the
results are similar for other types of decay models, e.g., the
exponential decay. The distance of the nearest-neighbor car-
bon atoms a=0.142 nm, which is also chosen as the unit of
distance in our calculations.

For convenience, we assume that the ferromagnetic strips
only act in the central region and the two clean and semi-
infinite graphene leads are employed as source and drain
leads and the temperature is set to zero. With the help of the
NEGF method and the Landauer-Büttiker formula, the two-
terminal spin-resolved conductance GS�D�

� �EF� is calculated
from the formula29

GS�D�
� �EF� =

e2

h
Tr�	S

��EF�Gr,��EF�	D
��EF�Ga,��EF�� , �2�

where 	S�D�
� �EF�= i	
S�D�

r,� �EF�− �
S�D�
r,� �EF��+
 is the

linewidth function. Gr,��EF�= �Ga,��EF��+

= �EFI−Hcen−
S
r,��E�−
D

r,��E��−1 is the retarded Green’s
function with the Hamiltonian in the central region Hcen.

S�D�

r,� �EF� is the self-energy due to the semi-infinite source-
�drain�, which can be calculated numerically.30

III. NUMERICAL RESULTS

In the following numerical calculations, the width Ny is
set to be Ny =52 and the length Nx is set at Nx=400. Corre-
sponding to the current experimental situation, we limit the
Fermi energy in the range of EF�0.1t where the dispersion
relation of graphene sheet is linear and exhibits the Dirac
behavior. Let us start describing the transport property for
the parallel and antiparallel configurations of ferromagnetic
stripes in a clear graphene with the disorder strength W=0.
In Fig. 2, the conductance as function of Fermi energy for
the alternative configurations of ferromagnetic stripes is
studied. When the Fermi energy EF locates around the Dirac

FIG. 1. �Color online� �a� Schematic of the device: two ferro-
magnetic stripes are placed on the top and bottom sides of the
zigzag graphene nanoribbon and the source and drain leads are
coupled to the graphene ribbon in the x direction. �b� and �c� are the
magnetization distributions along the y direction in the graphene for
the antiparallel �b� and parallel �c� configurations of two ferromag-
netic stripes, where Ny is the number of atomic lattice sites in y
direction, Nx is the number of vertical chains and M is the
magnetization.
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point, the conductance for the antiparallel configurations
clearly shows zero conductance plateau. However, for the
parallel configurations, the conductance exhibits the half-
integer quantized plateau 1/2 in unit of 2e2 /h. These behav-
iors indicate that the giant magnetoresistance can be
achieved in the present device while EF is set around the
Dirac point. With increase in the magnetization M, range of
the half-integer quantized conductance plateau for the paral-
lel configurations is extended. But the range of the zero con-
ductance for the antiparallel configuration is almost un-
changed while M increases from 0.05t to 0.1t. When EF
locates outside of the zero conductance or the half-integer
plateaus, the conductances show strong oscillation for both
parallel and antiparallel configurations, because of the mis-
match of interfaces between the lead and the center conduc-
tor. The oscillation is between e2 /h and 2e2 /h for the parallel
configuration, and between 0 and 2e2 /h for the antiparallel
configuration.

In the above discussion, we only consider the GMR effect
when Ny is even �zigzag configuration�. In order to prove the
robustness of the GMR effect in our scheme, we also calcu-
late the conductance as a function of Fermi energy EF for
odd Ny =53 �shown in Fig. 3�, corresponding to the so called
“antizigzag” nanoribbons.31,32 One can see that the conduc-
tance for the antiparallel configuration also shows the zero
conductance plateau when the Fermi energy EF locates
around the Dirac point. For the parallel configuration, the
conductance shows obvious oscillation in the whole EF re-
gion with the amplitude ranging between 1.5e2 /h and 2e2 /h,
which is not same as the zigzag configuration �see Fig. 2�.
However these changes do not affect the robustness of the
GMR effect in our scheme since the conductance in the par-
allel configuration is always larger than e2 /h in the entire
energy region where there is zero conductance for the anti-
parallel one. So the GMR effect is still there. On the other
hand, we should mention that the GMR effect is not apparent
for the armchair graphene nanoribbon regardless of the width
of nanoribbon.

In order to understand the zero conductance plateau for
antiparallel configuration of ferromagnetic stripes and the gi-

ant magnetoresistance effect, we calculate the band structure
of graphene nanoribbon with antiparallel and parallel con-
figurations. Here we consider an infinite graphene nanorib-
bon with the periodic boundary condition in x direction and
open boundary condition in y direction.33 From the band
structure �in Fig. 4�, one can see that the energy band gap
opens up near the Dirac point for the antiparallel configura-
tion, leading to a zero conductance when the Fermi energy
located in the band gap. But for parallel configuration of
ferromagnetic strips, the band structure shows no energy gap
for magnetization in the range from −3t to 3t. So the con-
ductance is always finite. These results also illuminate that
the graphene ribbon with antiparallel configuration of ferro-
magnetic strips shows the semiconductor property, while the
metallic property is remained for the parallel configuration.
Thus, the magnetoresistance is very large in the present
graphene ribbon device.

In the above calculations, we take the magnetization
M =0.05t and 0.1t. In a real experimental condition, M may
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FIG. 2. �Color online� The conductance G as function of the
Fermi energy EF for the antiparallel �black line� and parallel �blue
line� with the magnetization M =0.05t �a� and 0.1t �b�.
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FIG. 3. �Color online� The conductance G as function of the
Fermi energy EF for the antiparallel �black line� and parallel �blue
line� with the magnetization M =0.05t �a� and 0.1t �b�, correspond-
ing to the “antizigzag” nanoribbons.

FIG. 4. �Color online� The energy band structures for the anti-
parallel configuration �a and c� and parallel configuration �b and d�.
The width Ny =52 and the magnetization M =0.05t in the panels �a�
and �b� and 0.1t in the panels �c� and �d�.
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be quite small. For instance, by growing the graphene on a
ferromagnetic insulator �e.g., EuO�, its magnetization M is
only about 5 meV,19 thus, about 0.002t. However, the results
obtained in this paper still hold for smaller M. In Fig. 5, the
ratio of the energy gap Egap for the antiparallel configuration
to magnetization M as a function of M is plotted. When the
Fermi energy EF is within the energy gap Egap, the conduc-
tance is zero for the antiparallel configuration and is �e2 /h
for the parallel configuration, so the device has a large mag-
netoresistance. From Fig. 5, it is obvious that the ratio of
Egap /M increases monotonically with decrease in the mag-
netization and the ratio Egap /M exceeds 1 when M is small.
In other words, the energy gap Egap exists and its value is
larger than the magnetization M in a real experimental situ-
ation. Taking M =0.002t, for example, the energy gap
Egap�1.5M is larger than the energy kBT for temperature
T=70 K.

As shown in Fig. 2, the presence of the half-integer quan-
tized conductance plateau for the parallel configuration of
ferromagnetic stripes actually indicates half-metallicity, in
which one spin channel opens completely but the other spin
channel is closed. In order to understand this result, we
present the spin-dependent conductance for the parallel con-
figuration in Fig. 6. For M =0t �see Fig. 6�a��, the conduc-
tances of the spin-up and spin-down electrons are completely
equal since the system is a clean zigzag graphene sheet.34 As
M is set to be nonzero, the conductance of the spin-up chan-
nel remains at the quantized conductance plateau when the

Fermi energy EF is below zero, but an abrupt breakdown
from the quantized conductance plateau to zero conductance
plateau occurs when the Fermi energy EF passes zero �i.e., at
the Dirac point�. But for the spin-down channel, it shows the
opposite behavior. The conductance is at zero plateau while
EF�0, abruptly jumps to e2 /h at the Dirac point, and keeps
at the half-integer plateau for EF�0. Moreover, comparing
Figs. 6�b� and 6�c�, the ranges of the zero and the half-
integer conductance plateaus for spin-up or spin-down chan-
nels are extended with increase in the magnetization M �e.g.,
from 0.05t to 0.1t�.

To get a better understanding of the spin-dependent con-
ductance behavior in the parallel configuration of ferromag-
netic strips, in Fig. 7, we plot the spin-dependent band struc-
tures of the source lead, the central region, and the drain
lead. It was found that for a region around the band center,
the energy bands above and below the Dirac point show
opposite orbital symmetry �see Fig. 7�b��. The upper energy
bands with respect to the Dirac point show � symmetry in
which the wave functions exhibit the even parity. In contrast,
the lower energy bands have C2 symmetry in which the wave
functions exhibit the odd parity.17 As shown in Fig. 6�b�, the
magnetization lifts up the energy bands for the spin-up elec-
trons in the central region and causes the orbital symmetry
difference between the two leads and the central region for
the energy region in the red dash frame in Figs. 7�a�–7�c�.
On the other hand, in the same energy region, the spin-down
electrons exhibit the same orbital symmetry for these three
regions. Due to the parity conservation of the transverse
wave functions and the band-selection rule,35 only electrons
having the same parity as the wave functions of the central
region can pass through. Thus, only the spin-down electrons
can take part in the transport process when the Fermi energy
is above zero, and the zigzag graphene ribbon is an insulator
for the spin-up electrons in this case. But the situation is
exactly opposite when EF is below zero. In this case
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function of M.
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�EF�0�, the spin-up electrons have the same orbital parity in
the two leads and the central region, so they can transport
through the device, while the conductance for the spin-down
channel is zero now. Due to the nature of half-metal that acts
as a conductor to carriers of one spin orientation but as an
insulator to those of the opposite orientation, the graphene
nanoribbon can be used as a novel spin filter device, desir-
able for spintronic application. Here we want to stress that
the spin is completely polarized and the spin-polarization
orientation can be controlled by electric means in the present
spin filter device. By tuning the gate voltage, the Fermi en-
ergy EF can be controlled. While EF�0, the spin-polarized
direction of the current is in the spin-down direction, but for
EF�0 it is in the spin-up direction.

Finally, we consider the effect of the short-range Ander-
son disorder on the spin-polarized current and the large mag-
netoresistance. The results exhibit that they are stable against
the disorder. Figure 8 presents the effect of disorder on the
spin-dependent conductance, where the conductance is aver-
aged over up to 1000 random disorder configurations. In the
presence of a disorder potential, the transverse wave func-
tions in the central region are no longer odd or even func-
tions of the transverse position y. Thus the fraction of spin-
down �up� electrons also takes part in the transport process
when the Fermi energy is lower �higher� than zero. This
means the current of the minor spin component is not zero
and the spin polarization is not complete. But the conduc-
tance for the minor spin component still is small, and in our
simulation it is about 0.2e2 /h and remains in this value for a
broad range of disorder strength W �from 0.5t to 1.5t�. On
the other hand, the conductance for the major spin compo-
nent �i.e., the spin-up electrons at EF�0 or the spin-down

electrons at EF�0� is also slightly affected by the weak dis-
order �for W=0.5t�. With increase in the disorder strength,
the major spin-component conductance becomes smaller and
smaller, but it maintains a plateau structure. Even for
W=1.5t, the lowest conductance plateau is well established
with its plateau value at 0.4e2 /h. Notice that this value
0.4e2 /h is still twice larger than the minor spin-component
conductance. This indicates that the current is still well spin
polarized even for the disorder strength around 1.5t. Thus the
high and stable spin-polarized current can be produced based
on the present graphene nanoribbon device.

IV. CONCLUSIONS

In summary, we present spin polarization and giant mag-
netoresistance effect in zigzag graphene nanoribbon modu-
lated by configurations of ferromagnetic strips. For the anti-
parallel configuration, an energy band gap is opened by the
magnetization. So the conductance is zero when the Fermi
energy locates inside the gap �i.e., around the Dirac point�,
and the graphene nanoribbon shows the properties of a semi-
conductor in this situation. But for the parallel configuration,
the energy band spectrum remains gapless as in a clean
graphene, and the conductance is �e2 /h. Thus the huge giant
magnetoresistance can be achieved in this graphene device.
Furthermore, we study the spin dependent conductance and
energy band spectrum for the parallel configuration of ferro-
magnetic strips. The graphene nanoribbon shows half-
metallicity since it acts as conductor to electrons of one spin
orientation but as an insulator to those of the opposite orien-
tation. So the device can be applied as a spin filter and its
current is completely spin polarized. In addition, we find that
the spin-polarization direction in present spin filter current
can be conveniently controlled by the electric scheme, i.e.,
by only tuning the gate voltage. Finally, we study the effect
of disorder on the spin-polarization current and magnetore-
sistance. The results show that the disorder slightly weakens
the spin polarization, but the spin filtering effect and magne-
toresistance effect are well maintained even with strong dis-
order.
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